Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 919
Filtrar
1.
J Neurosci ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565292

RESUMO

Glucagon-like peptide-1 (GLP-1) and its analogs are widely used for treatment of diabetes. Paraventricular nucleus (PVN) is crucial for regulating cardiovascular activity. This study aims to determine the roles of GLP-1 and its receptors (GLP-1R) in PVN in regulating sympathetic outflow and blood pressure. Experiments were carried out in male normotensive rats and spontaneously hypertensive rats (SHR). Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. GLP-1 and GLP-1R expression was present in the PVN. PVN microinjection of GLP-1R agonist recombinant human GLP-1 (rhGLP-1) or EX-4 increased RSNA and MAP, which were prevented by GLP-1R antagonist EX9-39 or GLP-1R antagonist 1, superoxide scavenger tempol, antioxidant N-acetylcysteine, NADPH oxidase inhibitor apocynin, adenylyl cyclase inhibitor SQ22536 or protein kinase A (PKA) inhibitor H89. PVN microinjection of rhGLP-1 increased superoxide production, NADPH oxidase activity, cAMP level, adenylyl cyclase and PKA activity, which were prevented by SQ22536 or H89. GLP-1 and GLP-1R were upregulated in the PVN of SHR. PVN microinjection of GLP-1 agonist increased RSNA and MAP in both WKY and SHR, but GLP-1 antagonists caused greater effects in reducing RSNA and MAP in SHR than in WKY. The increased superoxide production and NADPH oxidase activity in the PVN of SHR were augmented by GLP-1R agonists, but attenuated by GLP-1R antagonists. These results indicate that activation of GLP-1R in PVN increased sympathetic outflow and blood pressure via cAMP-PKA-mediated NADPH oxidase activation and subsequent superoxide production. GLP-1 and GLP-1R upregulation in the PVN partially contribute to sympathetic overactivity and hypertension.Significance Statement Activation of GLP-1 receptors in paraventricular nucleus (PVN) increases sympathetic activity and blood pressure, which are mediated by cAMP-PKA-NADPH oxidase-superoxide production. Intervention of GLP-1 receptors in the PVN may play beneficial roles in attenuating sympathetic overactivity and hypertension. The central effects may have a major impact during GLP-1 receptor agonist therapy in patients with hypertension.

2.
Environ Pollut ; 349: 123905, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580062

RESUMO

With the acceleration of air cleaning activities in China, air pollution has entered a new stage characterized by seasonal interplay and predominance of fine particulate matter (PM2.5) and ozone (O3) pollutants. However, the differing peak seasons of these two pollution preclude the use of a unified indicator for air pollution complex. Given that peroxyacetyl nitrate (PAN) originates from secondary formation and persists under low-temperature conditions for extended periods, it is vital to determine whether its concentration can be used as an indicator to represent air pollution, not only in summer but also in winter. Here, PAN observational data from 2018 to 2022 for Beijing were analyzed. The results showed that during photochemical pollution events in summer, secondary formation of PAN was intense and highly correlated with O3 (R = 0.8), while during PM2.5 pollution events in winter, when the lifetime of PAN is extended due to the low temperature, the PAN concentration was highly consistent with the PM2.5 concentration (R = 0.9). As a result, the PAN concentration essentially exhibited consistency with both the seasonal trends in the exceedance of air pollution (R = 0.6) and the air quality index (R = 0.8). When the daily average concentration exceeds 0.5 and 0.9 ppb, the PAN concentration can be used as a complementary indicator of the occurrence of primary and secondary standard pollution, respectively. This study demonstrated the unique role of PAN as an indicator of air pollution complex, highlighting the comprehensive ability for air quality characterization and reducing the burden of atmospheric environment management.

3.
Gland Surg ; 13(3): 325-339, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38601284

RESUMO

Background: Breast cancer (BC) is one of the most common malignancies worldwide, and its development is affected in various ways by the tumor microenvironment (TME). Tumor-derived mesenchymal progenitor cells (MPCs), as the most important components of the TME, participate in the proliferation and metastasis of BC in several ways. In this study, we aimed to characterize the genes associated with tumor-derived MPCs and determine their effects on BC cells. Methods: Tumor-derived MPCs and normal breast tissue-derived mesenchymal stem cells (MSCs) were isolated from tissues specimens of patients with BC. We conducted culture and passage, phenotype identification, proliferation and migration detection, inflammatory factor release detection, and other experiments on isolated MPCs from tumors and MSCs from normal breast tissues. Three paired tumor-derived MPCs and normal breast tissue-derived MSCs were then subjected to transcriptome analysis to determine the expression profiles of the relevant genes, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to further confirm gene expression. Subsequently, the overexpression plasmids were transfected into tumor-derived MPCs, and the expression of various inflammatory factors of tumor-derived MPCs and their proliferation were characterized with a cell viability test reagent (Cell Counting Kit 8). Subsequently, the transfected tumor-derived MPCs were cocultured with BC cells using a conditioned medium coculture method to clarify the role of tumor-derived MSCs in BC. Results: Tumor-derived MPCs expressed stem cell characteristics including CD105, CD90, and CD73 and exhibited adipogenic and osteogenic differentiation in vitro. The proliferation of tumor-derived MPCs was significantly lower than that of normal breast tissue-derived MSCs, and the invasive metastatic ability was comparable; however, MPCs were found to release inflammatory factors such as interleukin 6 (IL-6) and transforming growth factor ß (TGF-ß). Transcriptome analysis showed that stomatin (STOM), collagen and calcium binding EGF domains 1 (CCBE1), and laminin subunit alpha 5 (LAMA5) were significantly upregulated in tumor-derived MPCs. Among them, STOM was highly expressed in tumor-derived MPCs, which mediated the slow proliferation of MPCs and promoted the proliferation of BC cells. Conclusions: STOM, CCBE1, and LAMA5 were highly expressed in tumor-derived MPCs, with STOM being found to retard the proliferation of MPCs but promote the proliferation of BC cells. There findings present new possibilities in targeted microenvironmental therapy for BC.

4.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611942

RESUMO

OBJECTIVE: To compare the effect of fermentation on the chemical constituents of Gastrodia Tuder Halimasch Powder (GTHP), to establish its fingerprinting and multicomponent content determination, and to provide a basis for the processing, handling, and clinical application of this herb. METHODS: Ultra-high-performance liquid chromatography-quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was used to conduct a preliminary analysis of the chemical constituents in GTHP before and after fermentation. High-performance liquid chromatography (HPLC) was used to determine some major differential components of GTHP and establish fingerprints. Cluster analysis (CA), and principal component analysis (PCA) were employed for comprehensive evaluation. RESULTS: Seventy-nine compounds were identified, including flavonoids, organic acids, nucleosides, terpenoids, and others. The CA and PCA results showed that ten samples were divided into three groups. Through standard control and HPLC analysis, 10 compounds were identified from 22 peaks, namely uracil, guanosine, adenosine, 5-hydroxymethylfurfural (5-HMF), daidzin, genistin, glycitein, daidzein, genistein, and ergosterol. After fermentation, GTHP exhibited significantly higher contents of uracil, guanosine, adenosine, 5-hydroxymethylfurfural, and ergosterol and significantly lower genistein and daidzein contents. CONCLUSIONS: The UHPLC-Q-Orbitrap HRMS and HPLC methods can effectively identify a variety of chemical components before and after the fermentation of GTHP. This study provides a valuable reference for further research on the rational clinical application and quality control improvement of GTHP.


Assuntos
Furaldeído/análogos & derivados , Gastrodia , Genisteína , Cromatografia Líquida de Alta Pressão , Fermentação , Pós , Adenosina , Ergosterol , Guanosina , Uracila
5.
Front Endocrinol (Lausanne) ; 15: 1324782, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601203

RESUMO

Objective: This study aims to map evidence from Randomized Controlled Trials (RCTs) and systematic reviews/Meta-analyses concerning the treatment of Diabetic Nephropathy (DN) with Traditional Chinese Medicine (TCM), understand the distribution of evidence in this field, and summarize the efficacy and existing problems of TCM in treating DN. The intention is to provide evidence-based data for TCM in preventing and treating DN and to offer a reference for defining future research directions. Methods: Comprehensive searches of major databases were performed, spanning from January 2016 to May 2023, to include clinical RCTs and systematic reviews/Meta-analyses of TCM in treating DN. The analysis encompasses the publishing trend of clinical studies, the staging of research subjects, TCM syndrome differentiation, study scale, intervention plans, and outcome indicators. Methodological quality of systematic reviews was evaluated using the AMSTAR (Assessment of Multiple Systematic Reviews) checklist, and evidence distribution characteristics were analyzed using a combination of text and charts. Results: A total of 1926 RCTs and 110 systematic reviews/Meta-analyses were included. The majority of studies focused on stage III DN, with Qi-Yin deficiency being the predominant syndrome type, and sample sizes most commonly ranging from 60 to 100. The TCM intervention durations were primarily between 12-24 weeks. Therapeutic measures mainly consisted of Chinese herbal decoctions and patented Chinese medicines, with a substantial focus on clinical efficacy rate, TCM symptomatology, and renal function indicators, while attention to quality of life, dosage of Western medicine, and disease progression was inadequate. Systematic reviews mostly scored between 5 and 8 on the AMSTAR scale, and evidence from 94 studies indicated potential positive effects. Conclusion: DN represents a significant health challenge, particularly for the elderly, with TCM showing promise in symptom alleviation and renal protection. Yet, the field is marred by research inconsistencies and methodological shortcomings. Future investigations should prioritize the development of standardized outcome sets tailored to DN, carefully select evaluation indicators that reflect TCM's unique intervention strategies, and aim to improve the robustness of clinical evidence. Emphasizing TCM's foundational theories while incorporating advanced scientific technologies will be essential for innovating research methodologies and uncovering the mechanisms underlying TCM's efficacy in DN management.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Humanos , Diabetes Mellitus/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa/métodos , Metanálise como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Revisões Sistemáticas como Assunto , Resultado do Tratamento
6.
Front Pharmacol ; 15: 1325607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606175

RESUMO

Objective: Diabetic peripheral neuropathy (DPN) stands as a crucial complication of diabetes, significantly affecting patients' quality of life. This study aims to elucidate the evidence distribution from clinical randomized controlled trials (RCTs) on DPN treatment with traditional Chinese medicine (TCM) through evidence mapping. Methods: A comprehensive search was conducted from January 2017 to October 2022 in databases such as Wanfang (China Online Journals), CNKI (China National Knowledge Infrastructure), VIP (China Science and Technology Journal Database), SinoMed (Chinese Biomedical Literature Database), PubMed, Web of Science, and Cochrane Library. Literature related to the treatment of DPN with TCM was selected. From the 1,229 RCTs identified over the past 6 years, relevant data were extracted. The evidence mapping approach was utilized, and trends in publications, study scales, intervention types, and evaluation indicators were analyzed using descriptive text combined with tables and bubble charts. Results: Research on the treatment of DPN with TCM is extensive. The publication trend remains relatively stable with predominantly smaller sample sizes. The main treatments encompass oral Chinese medicine and traditional external treatments. The most common evaluation indicators are neurophysiological, efficiency rate, symptom signs, neuropathy scores, and traditional Chinese symptoms, with less focus on psychological status and the ankle-brachial index (ABI). Conclusion: Shedding light on contemporary research, this study explores the current RCTs evaluating TCM's efficacy in treating DPN. The findings not only highlight the potential role of TCM in addressing diabetic complications but also underscore areas that could benefit from refined research approaches, expanded intervention methods, and broader assessment criteria. Our observations aim to inform and inspire future research directions and clinical practices concerning TCM's role in managing diabetes-associated complications.

7.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38607125

RESUMO

Photoelectrochemical cells (PECs) are an important technology for converting solar energy, which has experienced rapid development in recent decades. Transparent conductive oxides (TCOs) are also gaining increasing attention due to their crucial role in PEC reactions. This review comprehensively delves into the significance of TCO materials in PEC devices. Starting from an in-depth analysis of various TCO materials, this review discusses the properties, fabrication techniques, and challenges associated with these TCO materials. Next, we highlight several cost-effective, simple, and environmentally friendly methods, such as element doping, plasma treatment, hot isostatic pressing, and carbon nanotube modification, to enhance the transparency and conductivity of TCO materials. Despite significant progress in the development of TCO materials for PEC applications, we at last point out that the future research should focus on enhancing transparency and conductivity, formulating advanced theories to understand structure-property relationships, and integrating multiple modification strategies to further improve the performance of TCO materials in PEC devices.

8.
J Orthop Surg Res ; 19(1): 232, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594698

RESUMO

BACKGROUND: For knee osteoarthritis patients, analyzing alignment of lower limbs is essential for therapy, which is currently measured from standing long-leg radiographs of anteroposterior X-ray (LLR) manually. To address the time wasting, poor reproducibility and inconvenience of use caused by existing methods, we present an automated measurement model in portable devices for assessing knee alignment from LLRs. METHOD: We created a model and trained it with 837 conforming LLRs, and tested it using 204 LLRs without duplicates in a portable device. Both manual and model measurements were conducted independently, then we recorded knee alignment parameters such as Hip knee ankle angle (HKA), Joint line convergence angle (JCLA), Anatomical mechanical angle (AMA), mechanical Lateral distal femoral angle (mLDFA), mechanical Medial proximal tibial angle (mMPTA), and the time required. We evaluated the model's performance compared with manual results in various metrics. RESULT: In both the validation and test sets, the average mean radial errors were 2.778 and 2.447 (P<0.05). The test results for native knee joints showed that 92.22%, 79.38%, 87.94%, 79.82%, and 80.16% of the joints reached angle deviation<1° for HKA, JCLA, AMA, mLDFA, and mMPTA. Additionally, for joints with prostheses, 90.14%, 93.66%, 86.62%, 83.80%, and 85.92% of the joints reached that. The Chi-square test did not reveal any significant differences between the manual and model measurements in subgroups (P>0.05). Furthermore, the Bland-Altman 95% limits of agreement were less than ± 2° for HKA, JCLA, AMA, and mLDFA, and slightly more than ± 2 degrees for mMPTA. CONCLUSION: The automatic measurement tool can assess the alignment of lower limbs in portable devices for knee osteoarthritis patients. The results are reliable, reproducible, and time-saving.


Assuntos
Aprendizado Profundo , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/diagnóstico por imagem , Reprodutibilidade dos Testes , Extremidade Inferior/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Tíbia , Fêmur , Estudos Retrospectivos
9.
Heliyon ; 10(8): e29363, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644864

RESUMO

Skin hyperpigmentation is a worldwide condition associated with augmented melanogenesis. However, conventional therapies often entail various adverse effects. Here, we explore the safety range and depigmentary effects of polysaccharides extract of Tricholoma matsutake (PETM) in an in vitro model and further evaluated its efficacy at the clinical level. An induced-melanogenesis model was established by treating B16-F10 melanoma cells with 8-methoxypsoralen (8-MOP). Effects of PETM on cell viability and melanin content were examined and compared to a commonly used depigmentary agent, α-arbutin. Expressions of key melanogenic factors and upstream signaling pathway were analysed by quantitative PCR and western blot. Moreover, a placebo-controlled clinical study involving Chinese females with skin hyperpigmentation was conducted to measure the efficacy of PETM on improving facial pigmented spots, melanin index, and individual typology angle (ITA°). Results demonstrated that PETM (up to 0.5 mg/mL) had little effect on the viability and motility of B16-F10 cells. Notably, it significantly suppressed the melanin content and expressions of key melanogenic factors induced by 8-MOP in B16-F10 melanoma cells. Western blotting results revealed that PETM inhibited melanogenesis by inactivating c-Jun N-terminal kinase (JNK), and this inhibitory role could be rescued by JNK agonist treatment. Clinical findings showed that PETM treatment resulted in a significant reduction of facial hyperpigmented spot, decreased melanin index, and improved ITA° value compared to the placebo-control group. In conclusion, these in vitro and clinical evidence demonstrated the safety and depigmentary efficacy of PETM, a novel polysaccharide agent. The distinct mechanism of action of PETM on melanogenic signaling pathway positions it as a promising agent for developing alternative therapies.

10.
Org Lett ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604973

RESUMO

A two-step protocol for the conversion of alkyl-substituted alkynes to 1,3-enynes is reported. In this α-methenylation process, an iron-catalyzed propargylic C-H functionalization delivers tetramethylpiperidine-derived homopropargylic amines which undergo facile Cope elimination upon N-oxidation to afford the enyne products. A range of aryl alkyl and dialkyl acetylenes were found to be suitable substrates for this process, which constitutes an alkyne analogue for the Eschenmoser methenylation of carbonyl derivatives. In addition, a new bench-stable precatalyst for iron-catalyzed propargylic C-H functionalization is reported.

11.
Plants (Basel) ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38592767

RESUMO

As an essential element for plants, animals, and humans, selenium (Se) has been shown to participate in microbial methane oxidation. We studied the growth response and rhizosphere methane oxidation of an economic crop (prickly pear, Rosa roxburghii Tratt) through three treatments (Se0.6 mg/kg, Se2.0 mg/kg, and Se10 mg/kg) and a control (Se0 mg/kg) in a two-month pot experiment. The results showed that the height, total biomass, root biomass, and leaf biomass of prickly pear were significantly increased in the Se0.6 and Se2.0 treatments. The root-to-shoot ratio of prickly pear reached a maximum value in the Se2 treatment. The leaf carotenoid contents significantly increased in the three treatments. Antioxidant activities significantly increased in the Se0.6 and Se2 treatments. Low Se contents (0.6, 2 mg/kg) promoted root growth, including dry weight, length, surface area, volume, and root activity. There was a significant linear relationship between root and aboveground Se contents. The Se translocation factor increased as the soil Se content increased, ranging from 0.173 to 0.288. The application of Se can improve the state of rhizosphere soil's organic C and soil nutrients (N, P, and K). Se significantly promoted the methane oxidation rate in rhizosphere soils, and the Se10 treatment showed the highest methane oxidation rate. The soil Se gradients led to differentiation in the growth, rhizosphere soil properties, and methane oxidation capacity of prickly pear. The root Se content and Se translocation factor were significantly positively correlated with the methane oxidation rate. Prickly pear can accumulate Se when grown in Se-enriched soil. The 2 mg/kg Se soil treatment enhanced growth and methane oxidation in the rhizosphere soil of prickly pear.

12.
Anal Chem ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648270

RESUMO

Unsaturated lipids constitute a significant portion of the lipidome, serving as players of multifaceted functions involving cellular signaling, membrane structure, and bioenergetics. While derivatization-assisted liquid chromatography tandem mass spectrometry (LC-MS/MS) remains the gold standard technique in lipidome, it mainly faces challenges in efficiently labeling the carbon-carbon double bond (C═C) and differentiating isomeric lipids in full dimension. This presents a need for new orthogonal methodologies. Herein, a metal- and additive-free aza-Prilezhaev aziridination (APA)-enabled ion mobility mass spectrometric method is developed for probing multiple levels of unsaturated lipid isomerization with high sensitivity. Both unsaturated polar and nonpolar lipids can be efficiently labeled in the form of N-H aziridine without significant side reactions. The signal intensity can be increased by up to 3 orders of magnitude, achieving the nM detection limit. Abundant site-specific fragmentation ions indicate C═C location and sn-position in MS/MS spectra. Better yet, a stable monoaziridination product is dominant, simplifying the spectrum for lipids with multiple double bonds. Coupled with a U-shaped mobility analyzer, identification of geometric isomers and separation of different lipid classes can be achieved. Additionally, a unique pseudo MS3 mode with UMA-QTOF MS boosts the sensitivity for generating diagnostic fragments. Overall, the current method provides a comprehensive solution for deep-profiling lipidomics, which is valuable for lipid marker discovery in disease monitoring and diagnosis.

13.
J Cell Mol Med ; 28(7): e18224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509739

RESUMO

Drug-target interaction (DTI) prediction is essential for new drug design and development. Constructing heterogeneous network based on diverse information about drugs, proteins and diseases provides new opportunities for DTI prediction. However, the inherent complexity, high dimensionality and noise of such a network prevent us from taking full advantage of these network characteristics. This article proposes a novel method, NGCN, to predict drug-target interactions from an integrated heterogeneous network, from which to extract relevant biological properties and association information while maintaining the topology information. It focuses on learning the topology representation of drugs and targets to improve the performance of DTI prediction. Unlike traditional methods, it focuses on learning the low-dimensional topology representation of drugs and targets via graph-based convolutional neural network. NGCN achieves substantial performance improvements over other state-of-the-art methods, such as a nearly 1.0% increase in AUPR value. Moreover, we verify the robustness of NGCN through benchmark tests, and the experimental results demonstrate it is an extensible framework capable of combining heterogeneous information for DTI prediction.


Assuntos
Desenho de Fármacos , Redes Neurais de Computação
14.
Front Plant Sci ; 15: 1344733, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516665

RESUMO

Introduction: Phosphorus (P), which plays a vital role in plant growth, is continually added to soil to maximize biomass production, leading to excessive P accumulation and water eutrophication. Results: In this study, a pot experiment using a subtropical tobacco-growing soil fertilized with four P levels-no P, low P, medium P, and high P-was conducted and rhizosphere and bulk soils were analyzed. Results: P addition significantly increased tobacco biomass production (except under low P input) and total soil P and available P content (P<0.05), whereas total nitrogen content decreased in the rhizosphere soils, although this was only significant with medium P application. P fertilization also significantly altered the bacterial communities of rhizosphere soils (P<0.05), but those of bulk soils were unchanged (P>0.05). Moreover, a significant difference was found between rhizosphere soils with low (LR) and high (HR) P inputs (P<0.05). Additionally, compared with rhizosphere soils with no P (CKR), Shannon diversity showed a declining trend, which was significant with LR and HR (P<0.05), whereas an increasing tendency was observed for Chao1 diversity except in LR (P>0.05). Functional prediction revealed that P application significantly decreased the total P and N metabolism of microorganisms in rhizosphere soils (P<0.05). Discussion: Collectively, our results indicate that maintaining sustainable agricultural ecosystems under surplus P conditions requires more attention to be directed toward motivating the potential of soil functional microbes in P cycling, rather than just through continual P input.

15.
Cell Rep ; 43(4): 113985, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38517890

RESUMO

Emerging evidence suggests a beneficial role of rhizobacteria in ameliorating plant disease resistance in an environment-friendly way. In this study, we characterize a rhizobacterium, Bacillus cereus NJ01, that enhances bacterial pathogen resistance in rice and Arabidopsis. Transcriptome analyses show that root inoculation of NJ01 induces the expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes in Arabidopsis leaves. Genetic evidence showed that EDS1, PAD4, and WRKY18 are required for B. cereus NJ01-induced bacterial resistance. An EDS1-PAD4 complex interacts with WRKY18 and enhances its DNA binding activity. WRKY18 directly binds to the W box in the promoter region of the SA biosynthesis gene ICS1 and ABA biosynthesis genes NCED3 and NCED5 and contributes to the NJ01-induced bacterial resistance. Taken together, our findings indicate a role of the EDS1/PAD4-WRKY18 complex in rhizobacteria-induced disease resistance.

17.
J Colloid Interface Sci ; 664: 938-945, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503079

RESUMO

Supramolecular self-assembly is ubiquitous in living system and is usually controlled to proceed in time and space through sophisticated reaction-diffusion processes, underpinning various vital cellular functions. In this contribution, we demonstrate how spatiotemporal self-assembly of supramolecular hydrogels can be realized through a simple reaction-diffusion-mediated transient transduction of pH signal. In the reaction-diffusion system, a relatively faster diffusion of acid followed by delayed enzymatic production and diffusion of base from the opposite site enables a transient transduction of pH signal in the substrate. By coupling such reaction-diffusion system with pH-sensitive gelators, dynamic supramolecular hydrogels with tunable lifetimes are formed at defined locations. The hydrogel fibers show interesting dynamic growing behaviors under the regulation of transient pH signal, reminiscent of their biological counterpart. We further demonstrate a proof-of-concept application of the developed methodology for dynamic information encoding in a soft substrate. We envision that this work may provide a potent approach to enable transient transduction of various chemical signals for the construction of new colloidal materials with the capability to evolve their structures and functionalities in time and space.

18.
J Biochem Mol Toxicol ; 38(4): e23687, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38515005

RESUMO

To analyze the expression profile of fatty acid metabolism (FAM)-related genes, identify a prognostic signature, and evaluate its clinical value for gastric cancer (GC) patients. The mRNA expression profiles of 493 FAM-related genes were obtained from TCGA database. Differentially expressed genes (DEGs) between cancer and non-cancer samples were identified, and their relationships with overall survival (OS) of GC patients were evaluated. A prognostic signature of FAM-related genes was identified by the LASSO regression model, and its predictive performance was tested by an independent external cohort. Ninety-three DEGs were identified, of which 44 were downregulated and 49 were upregulated. After optimizing risk characteristics, a prognostic signature of four FAM-related genes (ACBD5, AVPR1A, ELOVL4, and FAAH) were developed. All patients were divided into high-risk (>1.020) and low-risk groups (≤1.020) on the basis of the median risk score. Survival analysis indicated that high-risk patients had a shorter OS than low-risk patients (5-year OS rate, 26.3% vs. 45.0%, p < 0.001). The AUC values for the prediction of 3-year and 5-year OS were 0.664 and 0.624, respectively. In the GSE62254 data set, the 5-year OS rate of high-risk and low-risk patients were 44.7% versus 61.5%, respectively (p = 0.003). The AUC values were 0.632 and 0.627 at 3-year and 5-year prediction. The prognostic signature of FAM-related genes was an independent predictor of OS (hanzard ratio [HR] for TCGA cohort: 1.851, 95% confidence interval [CI]: 1.394-2.458, p < 0.001; HR for GSE62254: 1.549, 95% CI: 1.098-2.185, p = 0.013). The risk signature of four FAM-related genes was a valuable prognostic tool, and it might be helpful for clinical management and therapeutic decision of gastric cancer patients.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Prognóstico , Metabolismo dos Lipídeos , Fatores de Risco , Ácidos Graxos
19.
Sci Total Environ ; 927: 171874, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537834

RESUMO

The planetary boundary layer (PBL) characteristics during ozone (O3) episodes in China have been extensively studied; however, knowledge of the impact of boundary layer jets (BLJs) on O3 vertical distribution is limited. This study conducted a field campaign from 1 to 8 December 2020 to examine the vertical structure of the O3 concentration and wind velocity within the boundary layer at two sites (Foshan: FS, Maoming: MM) in Guangdong. Utilising lidar observations and the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), distinct spatial distribution patterns of O3 over FS and MM influenced by BLJs were identified. The BLJs at both locations exhibited pronounced diurnal variations with a nocturnal maximum exceeding 11 m/s at a height of approximately 500 m. The nocturnal enhancement of BLJs resulted from inertial oscillations coupled with diurnal thermal forcing over sloping terrain. A stronger BLJ at FS induced an evident uplift of O3 and the prevailing northeasterly wind facilitated the transport of O3 in the nocturnal residual layer from FS to MM. After sunrise, surface heating and the development of the PBL caused the air mass with elevated O3 levels in the residual layer to descend to ground level. At MM, calm surface winds, a weaker BLJ at 500 m height, and strong downdrafts collectively contributed to a significant increase in surface O3 concentration in subsequent days. These findings contribute to our understanding of the interactions between BLJs and variations in surface air pollutant concentrations, thereby providing important insights for future regional emissions control measures.

20.
Small ; : e2310241, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441385

RESUMO

The direct use of mesenchymal stem cells (MSCs) as therapeutics for skin injuries is a promising approach, yet it still faces several obstacles, including limited adhesion, retention, and engraftment of stem cells in the wound area, as well as impaired regenerative and healing functions. Here, DNA-based self-assembled composites are reported that can aid the adhesion of MSCs in skin wounds, enhance MSC viability, and accelerate wound closure and re-epithelialization. Rolling-circle amplification (RCA)-derived DNA flowers, equipped with multiple copies of cyclic Arg-Gly-Asp (cRGD) peptides and anti-von Willebrand factor (vWF) aptamers, act as robust scavengers of reactive oxygen species (ROS) and enable synergistic recognition and adhesion to stem cells and damaged vascular endothelial cells. These DNA structure-aided stem cells are retained at localized wound sites, maintain repair function, and promote angiogenesis and growth factor secretion. In both normal and diabetes-prone db/db mice models with excisional skin injuries, facile topical administration of DNA flower-MSCs elicits rapid blood vessel formation and enhances the sealing of the wound edges in a single dose. DNA composite-engineered stem cells warrant further exploration as a new strategy for the treatment of skin and tissue damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...